Reduced nuclear translocation of serum response factor is associated with skeletal muscle atrophy in a cigarette smoke-induced mouse model of COPD

نویسندگان

  • Ran Ma
  • Xuefang Gong
  • Hua Jiang
  • Chunyi Lin
  • Yuqin Chen
  • Xiaoming Xu
  • Chenting Zhang
  • Jian Wang
  • Wenju Lu
  • Nanshan Zhong
چکیده

Skeletal muscle atrophy and dysfunction are common complications in the chronic obstructive pulmonary disease (COPD). However, the underlying molecular mechanism remains elusive. Serum response factor (SRF) is a transcription factor which is critical in myocyte differentiation and growth. In this study, we established a mouse COPD model induced by cigarette smoking (CS) exposure for 24 weeks, with apparent pathophysiological changes, including increased airway resistance, enlarged alveoli, and skeletal muscle atrophy. Levels of upstream regulators of SRF, striated muscle activator of Rho signaling (STARS), and ras homolog gene family, member A (RhoA) were decreased in quadriceps muscle of COPD mice. Meanwhile, the nucleic location of SRF was diminished along with its cytoplasmic accumulation. There was a downregulation of the target muscle-specific gene, Igf1. These results suggest that the CS is one of the major causes for COPD pathogenesis, which induces the COPD-associated skeletal muscle atrophy which is closely related to decreasing SRF nucleic translocation, consequently downregulating the SRF target genes involved in muscle growth and nutrition. The STARS/RhoA signaling pathway might contribute to this course by impacting SRF subcellular distribution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-term cigarette smoke exposure inhibits histone deacetylase 2 expression and enhances the nuclear factor-κB activation in skeletal muscle of mice

Long-term cigarette smoke induces lung inflammatory injury and chronic obstructive pulmonary disease (COPD), associated with skeletal muscle inflammation. This study aimed at investigating how cigarette smoke promotes skeletal muscle inflammation and its molecular pathogenesis. Mice were exposed to air or cigarette smoke for 12 or 24 weeks, and C2C12 cells were stimulated with cigarette smoke e...

متن کامل

Vitamin D deficiency impairs skeletal muscle function in a smoking mouse model

Chronic obstructive pulmonary disease (COPD) is associated with skeletal muscle dysfunction. Vitamin D plays an important role in muscle strength and performance in healthy individuals. Vitamin D deficiency is highly prevalent in COPD, but its role in skeletal muscle dysfunction remains unclear. We examined the time-course effect of vitamin D deficiency on limb muscle function in mice with norm...

متن کامل

Decreased levels of irisin, a skeletal muscle cell-derived myokine, are related to emphysema associated with chronic obstructive pulmonary disease

BACKGROUND Cigarette smoking-induced oxidant-antioxidant imbalance is a factor that contributes to the pathogenesis of COPD through epithelial cell apoptosis. Irisin is a skeletal muscle cell-derived myokine associated with physical activity. Irisin is also known to decrease oxidant-induced apoptosis in patients with diabetes mellitus. However, the correlation between irisin and emphysema in CO...

متن کامل

Alterations in Skeletal Muscle Cell Homeostasis in a Mouse Model of Cigarette Smoke Exposure

BACKGROUND Skeletal muscle dysfunction is common in chronic obstructive pulmonary disease (COPD), a disease mainly caused by chronic cigarette use. An important proportion of patients with COPD have decreased muscle mass, suggesting that chronic cigarette smoke exposure may interfere with skeletal muscle cellular equilibrium. Therefore, the main objective of this study was to investigate the ki...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017